
OSE Workbench Platform
Release 0.1.4

G Roques

Dec 27, 2020

WORKBENCH PLANNING

1 Deciding on a Machine 3

2 Breaking Down a Machine Into Parts 5

3 Designing Icons 7

4 Breaking Down Parts Into Sub-Parts 9

5 Designing Parts 13

6 Defining Relationships Between Parts 17

7 Editor 19

8 Breakdown Strategy 23

9 Branching Strategy 27

10 Versioning Strategy 29

11 Third Party Services 31

12 Repository Scope and Naming 33

13 Root Repository Contents 35

14 App Gui Architecture 39

15 Library Package 41

16 Part Classes 45

17 Model Classes 47

18 Attachment Functions 49

19 Workbench Package 51

20 Command Classes 57

21 OSE Workbench Ecosystem 59

22 osewb 61

i

23 examples 67

24 Indices and tables 69

Python Module Index 71

Index 73

ii

OSE Workbench Platform, Release 0.1.4

A platform for workbench development by Open Source Ecology.

OSE defines a “workbench” as a set of tools in CAD software to design and make a particular machine.

The below Workbench Planning pages cover planning for workbench development. Note, anyone can contribute to
the workbench planning process, and you don’t need to be a programmer. Indeed, OSE workbench development teams
benefit from a diversity of people with different backgrounds and skill-sets.

The below Developer Onboarding pages contain guides for getting setup as an OSE workbench developer.

The below Development Process pages describe various processes related to development such as breaking down
development work, branching, and versioning.

The below Pattern Catalog pages describe structure and patterns for solving common problems in workbenches using
the FreeCAD platform.

Every workbench should follow the above standards and guidelines to make working between various workbenches
easier, and increase collaboration.

WORKBENCH PLANNING 1

https://www.opensourceecology.org/

OSE Workbench Platform, Release 0.1.4

2 WORKBENCH PLANNING

CHAPTER

ONE

DECIDING ON A MACHINE

OSE Workbenches generally center around one machine in the Global Village Construction Set (GVCS).

Examples of machines in the GVCS include:

• Tractors

• Compressed Earth Brick (CEB) Presses

• Power Cubes

• and 3D Printers

The first step in workbench planning is deciding on a machine to focus on.

The goal of an OSE workbench should be to stream-line the design of machine variants.

1.1 Amount of Allowed Variation

The balance between how much variation the workbench allows in the design of a machine is a delicate one.

On the one hand, the value of a workbench is it’s strictness in variation based on what OSE has tested and discovered
works best in practice.

On the other hand, the value of a workbench is allowing people to deviate from the “standard design” to create a design
suited to their unique needs.

1.2 Related Machines

Depending on which machine the workbench focuses on, there may be related machines.

For example, the Tractor includes a Power Cube as it’s primary energy source.

These relationships need to be considered carefully in the initial workbench development planning phase.

In the above example, it would be wise to create a Power Cube Library that both the Tractor and Power Cube
workbenches rely on.

3

https://wiki.opensourceecology.org/wiki/Global_Village_Construction_Set
https://wiki.opensourceecology.org/wiki/LifeTrac
https://wiki.opensourceecology.org/wiki/CEB_Press
https://wiki.opensourceecology.org/wiki/Power_Cube
https://wiki.opensourceecology.org/wiki/3D_Printer

OSE Workbench Platform, Release 0.1.4

1.3 Next Step

Once the machine is decided, you must break down the machine into individual parts.

4 Chapter 1. Deciding on a Machine

breaking_down_a_machine_into_parts.html

CHAPTER

TWO

BREAKING DOWN A MACHINE INTO PARTS

Every machine can be broken down into individual parts.

For example, a simplified part breakdown of a 3D printer might be:

• Frame

• X, Y, and Z Axes

• Extruder

• Heated Bed

3D Printer

Frame X, Y, and Z Axes Extruder Heated Bed

Fig. 1: Simplified part breakdown of a 3D printer

Each of these parts usually correspond to buttons on the main toolbar of a workbench, and need corresponding icons.

Fig. 2: 3D Printer Workbench: Main Toolbar Buttons

Clicking one of these buttons adds the corresponding part to the user’s active document in FreeCAD.

5

OSE Workbench Platform, Release 0.1.4

2.1 Level of Breakdown

Do you need to include every part of a machine in the initial breakdown?

No.

For example, we excluded less-critical parts of the 3D Printer such as the controller, power supply, wiring, and spool
holder.

Is our above simplified part breakdown still useful? Yes.

Thus, a workbench only including a simplified minimal set of core parts is useful.

In fact, to begin workbench development, definining the minimal set of core parts for the machine is recommended.

2.2 Define Core Parts

How do you decide on which parts to include in the minimal core set?

It’s helpful to identify a subject matter expert (SME) or Product Owner to assist in this decision.

Someone who’s knowledgeable about the machine, and what would be most useful to users of the workbench.

Start with the Minimum Viable Product (MVP), iterate, and come back to the other parts you left out in a later phase.

Deciding on the parts of a machine is not performed once and unable to change.

It’s an iterative process that occurs over the lifetime of a workbnech.

2.3 Next Steps

The next two steps in workbench planning can be performed in parallel:

1. Breaking down parts into sub-parts

2. Designing icons

6 Chapter 2. Breaking Down a Machine Into Parts

https://en.wikipedia.org/wiki/Subject-matter_expert
https://en.wikipedia.org/wiki/Scrum_(software_development)#Product_owner
https://en.wikipedia.org/wiki/Minimum_viable_product
breaking_down_parts_into_sub_parts.html
designing_icons.html

CHAPTER

THREE

DESIGNING ICONS

Once the machine is broken down into parts, icons representing each part can be designed.

See FreeCAD Wiki: Artwork Guidelines for recommendations on how to design the icons.

Once designed, add the icons to the OSE FreeCAD Icons page for documentation purposes.

If you lack a designer, or desire to create icons, then you may temporarily use existing FreeCAD icons that adhere to
FreeCAD Artwork Guidelines.

However, this approach is not recommended for a long-term solution, and care must be taken to design appropriate
icons for each part that are distinct from other icons in the FreeCAD UI.

7

breaking_down_a_machine_into_parts.html
https://wiki.freecadweb.org/Artwork_Guidelines
https://wiki.opensourceecology.org/wiki/OSE_FreeCAD_Icons
https://github.com/FreeCAD/FreeCAD/tree/master/src/Gui/Icons

OSE Workbench Platform, Release 0.1.4

8 Chapter 3. Designing Icons

CHAPTER

FOUR

BREAKING DOWN PARTS INTO SUB-PARTS

Once the machine is broken down into individual parts, then those parts can be further broken down into sub-parts.

Going back to the simplified part breakdown of a 3D printer as an example:

• Frame

• X, Y, and Z Axes

• Extruder

• Heated Bed

3D Printer

Frame X, Y, and Z Axes Extruder Heated Bed

Fig. 1: Simplified part breakdown of a 3D printer

We may breakdown the Frame into:

• Angled Bars

• Angled Bar Connectors

9

OSE Workbench Platform, Release 0.1.4

3D Printer

Frame X, Y, and Z Axes Extruder Heated Bed

Angled Bars Angled Bar Connectors

Fig. 2: Further part breakdown of a 3D printer with Frame breakdown

4.1 Terminology

The amalgamation of parts and sub-parts is called an assembly.

Also note, there may not be a difference between a part and a sub-part.

The “part” and “sub-part” terms are contextual.

For example, the Frame is both a part in it’s own right, and a sub-part of the 3D printer.

4.2 Level of Breakdown

Similarly, we could breakdown the axes, extruder, and heated bed into sub-parts.

Then, we could continue breaking down those sub-parts into sub-parts until we get to the most basic parts of the
machine.

There’s no real limit to how far you can breakdown a machine. It’s recommneded to continue breaking down a machine
for as long as it’s useful and practical.

Tip: See Depth of Modularity for more information.

Similar guidance as specified in breaking down a machine applies.

For the first iteration of a workbench, it’s easier to include less detail in the breakdown of parts.

File size, memory consumption, and performance must also be considered when designing a workbench.

For example, parts that include more details will take up more space on disk, take longer to render, and potentially
slow down FreeCAD.

Due to these limitations, starting with simplified parts is recommneded.

10 Chapter 4. Breaking Down Parts Into Sub-Parts

https://wiki.opensourceecology.org/wiki/Depth_of_Modularity
breaking_down_a_machine_into_parts.html#level-of-breakdown

OSE Workbench Platform, Release 0.1.4

4.3 3D Printing Considerations

Does the part need to be 3D printed?

If so, then you’ll need to include all details in the part.

In cases like this, it’s helpful to allow the user to create a simplified version of the part for modeling purposes, and the
full-detailed part separately for exporting to STL or OBJ for printing.

4.4 Shared Sub-Parts

The process of breaking down parts into sub-parts can reveal shared sub-parts.

For example, the axis and extruder might both contain a motor, or the same fasteners like nuts, screws, and bolts.

This information is useful to programmers as they can abstract the modeling for these parts into a common place for
re-use.

4.5 Next Step

Once the top-level parts are broken down into sub-parts, those parts can be designed in FreeCAD.

4.3. 3D Printing Considerations 11

designing_parts.html

OSE Workbench Platform, Release 0.1.4

12 Chapter 4. Breaking Down Parts Into Sub-Parts

CHAPTER

FIVE

DESIGNING PARTS

Once the machine is broken down into individual parts, and those parts are broken down into sub-parts, then someone
can design those parts in FreeCAD.

The generated FreeCAD asset files for each part can be documented on the OSE Wiki as a Part Library.

The Part Library serves as a helpful guide for developers who need to replicate that geometry programatically in
Python.

5.1 Design All the Variations

Does the part have different states or variations?

For example, the Angle Frame Connector, or part that connects the angled bars together for the 3D Printer Frame, can
include extra geometry for holding the angled bars in place with a set screw.

Fig. 1: Angle Frame Connector

Note, the basic geometry in both designs are very similar.

The design with a set screw is a more complicated variation of the initial design.

13

breaking_down_parts_into_sub_parts.html
https://wiki.freecadweb.org/File_Format_FCStd

OSE Workbench Platform, Release 0.1.4

Fig. 2: Angle Frame Connector with Set Screw

A developer can take advantage of this similarity to reduce and share code when developing the part in the workbench.

It’s easier to identifiy variations up-front in the design phase before writing the code.

5.2 Define the Parameteric Properties

What are the parameteric properties?

What attributes of the part do you want to parameterize, or allow the user to change and input values for?

For example, the Angle Frame Connector can have different slot widths and thicknesses to support smaller or larger
3D Printer Frames.

Below we see two angle frame connectors with different values for these parameters.

Angle Frame Connector Slot Width Slot Thickness
Small 1.5 inches 0.125 inches
Large 3 inches 0.25 inches

14 Chapter 5. Designing Parts

OSE Workbench Platform, Release 0.1.4

Fig. 3: Angle Frame Connector with Different Sizes

5.3 Next Step

After the parts are designed, you can define the relationship between parts.

5.3. Next Step 15

defining_relationships_between_parts.html

OSE Workbench Platform, Release 0.1.4

16 Chapter 5. Designing Parts

CHAPTER

SIX

DEFINING RELATIONSHIPS BETWEEN PARTS

Once the parts are designed, relationships between parts can be defined.

6.1 Attachment

A common way to relate parts together is through attachment.

For example, in a 3D Printer, axes can be attached to the frame.

If the user moves the frame, then the axes should move accordingly.

Note, these relationships can be hierarchical.

For example, you can attach an X axis to the top of the frame.

Then, you can attach an extruder to the X axis.

The extruder isn’t directly attached to the frame, but if the frame moves, then the X axis should move, and thus the
extruder should also move.

6.2 Parent-Child Relationships

It’s also possible that values for properties trickle down from parts to sub-parts through parent-child relationships.

For example, the 3D Printer frame may a thickness property to adjust how thick the metal is.

Sub-parts like the angled bars and connectors inherit the value for the thickness property of the frame to ensure they
always match.

Identifying properties that flow from parent to child parts can be helpful prior to development.

Tip: Tree diagrams can be made in the part breakdown phase to visualize parent-child part relationships

17

designing_parts.html

OSE Workbench Platform, Release 0.1.4

18 Chapter 6. Defining Relationships Between Parts

CHAPTER

SEVEN

EDITOR

The following page outlines guides for recommended editors and integrated development environments (IDEs) for
OSE workbench development.

7.1 Visual Studio Code

Visual Studio Code is a free, cross-platform, extensible editor built on open-source.

7.1.1 Recommended Extensions

Extension Description
Python Python language support
Python Test Explorer for Visual Studio Code Run your Python Unittest or Pytest tests with the Test Explorer UI.
Python Docstring Generator Quickly generate docstrings for python functions.

The above extensions should be listed in .vscode/extensions.json within each workbench repository to
prompt the user to install them. See Workspace recommended extensions for additional information.

7.1.2 Recommended Extensions Configuration

OSE Workbench Platform includes an editor-config command configuring the above VS Code extensions with
the recommended configuration.

See the editor-config command documentation in the README for additional information.

OSE Workbench Platform includes an `editor-config` command for outputting recommended
→˓VS Code configuration.

```
$ osewb editor-config -h
usage: osewb editor-config

optional arguments:
-h, --help show this help message and exit
-m, --merge-workspace-settings

Merge VS Code workspace settings.
-o, --overwrite-workspace-settings

Overwrite VS Code workspace settings.

(continues on next page)

19

https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=ms-python.python
https://marketplace.visualstudio.com/items?itemName=LittleFoxTeam.vscode-python-test-adapter
https://marketplace.visualstudio.com/items?itemName=hbenl.vscode-test-explorer
https://marketplace.visualstudio.com/items?itemName=njpwerner.autodocstring
https://code.visualstudio.com/docs/editor/extension-gallery#_workspace-recommended-extensions
https://github.com/gbroques/ose-workbench-platform#editor-config


OSE Workbench Platform, Release 0.1.4

(continued from previous page)

```

Simply running `osewb editor-config` will output the recommended VS Code
→˓configuration settings which user's can copy-paste into their VS Code user settings,
→˓ or workspace settings, `settings.json` file(s). See [User and Workspace
→˓Settings](https://code.visualstudio.com/docs/getstarted/settings) for additional
→˓information.

The `-m` or `--merge-workspace-settings` flag will merge the current VS workspace
→˓settings into the platform's recommended settings. The platform's settings will win
→˓any collisions or merge conflicts.

The `-o` or `--overwrite-workspace-settings` flag will overwrite the current VS Code
→˓workspace settings with either the minimal-set of recommended configuration or
→˓merged settings depending upon the presence of the `-m` flag. Before overwriting,
→˓users will see a preview of the settings and must confirm overwriting in a yes or
→˓no CLI prompt.

7.1.3 Python Docstring Generator Configuration

A custom docstring template for OSE workbenches has been included in ose-workbench-platform/osewb/
.mustache.

{{! Sphinx Docstring Template }}
{{! For VSCode Python Docstring Generator Extension }}
{{! https://marketplace.visualstudio.com/items?itemName=njpwerner.autodocstring }}
{{! Modified to remove typePlaceholder }}
{{summaryPlaceholder}}

{{extendedSummaryPlaceholder}}

{{#args}}
:param {{var}}: {{descriptionPlaceholder}}
{{/args}}
{{#kwargs}}
:param {{var}}: {{descriptionPlaceholder}}
{{/kwargs}}
{{#exceptions}}
:raises {{type}}: {{descriptionPlaceholder}}
{{/exceptions}}
{{#returns}}
:return: {{descriptionPlaceholder}}
{{/returns}}
{{#yields}}
:yield: {{descriptionPlaceholder}}
{{/yields}}

You should configure the extension to use this template in order to avoid adding types to your docstrings.

Types in docstrings are redundant with Type Hints — the preferred way to document the types in Python.

Is VS Code open-source?

Explained by a VS Code developer:

20 Chapter 7. Editor

https://www.python.org/dev/peps/pep-0484/
https://github.com/Microsoft/vscode/issues/60#issuecomment-161792005

OSE Workbench Platform, Release 0.1.4

When we set out to open source our code base, we looked for common practices to emulate for our
scenario. We wanted to deliver a Microsoft branded product, built on top of an open source code base that
the community could explore and contribute to.

We observed a number of branded products being released under a custom product license, while mak-
ing the underlying source code available to the community under an open source license. For example,
Chrome is built on Chromium, the Oracle JDK is built from OpenJDK [. . .] Those branded products
come with their own custom license terms, but are built on top of a code base that’s been open sourced.

We then follow a similar model for Visual Studio Code. We build on top of the vscode code base we just
open sourced and we release it under a standard, pre-release Microsoft license.

7.2 VSCodium

For open-source purists, you may be interested in the MIT-licensed VSCodium as a VS Code alternative.

7.3 Don’t See Your Preferred Editor?

We need you to help write the guide!

7.2. VSCodium 21

https://vscodium.com/

OSE Workbench Platform, Release 0.1.4

22 Chapter 7. Editor

CHAPTER

EIGHT

BREAKDOWN STRATEGY

This page defines a process for breaking down the development work of a workbench.

1. Initialize Workbench

2. Make Parts

3. Parameterize Parts

4. Attachment

5. Cut List Generation

6. CAM File Generation

If you have multiple developers, then work on separate parts in parallel:

Important: Each step in the above process may not apply to all parts depending upon requirements.

8.1 1. Make a New Workbench

1. Use the osewb make workbench command to make a new workbench.

2. Create a git repository and host it on a centralized platform like GitHub.

8.2 2. Make Parts

1. Add packages for each part in the part package and corresponding part classes.

2. Add icons for each part in the icon package.

3. Add packages for each part in the command package and corresponding command classes that call the part
classes.

4. Register that command in the command registry module and associate it to the main toolbar.

23

app_package.html#part-sub-package
part_classes.html
gui_package.html#icon-sub-package
gui_package.html#command-sub-package
command_classes.html
gui_package.html#command-registry-module

OSE Workbench Platform, Release 0.1.4

Developer 1 Developer 2

Make Axis

Parameterize Axis

Add Axis to Cut List

Make Axis CAM

Make Extruder

Parameterize Extruder

Add Extruder to Cut List

Make Extruder CAM

Initialize Workbench

Fig. 1: Breakdown Strategy for Multiple Developers

24 Chapter 8. Breakdown Strategy

OSE Workbench Platform, Release 0.1.4

8.3 3. Parameterize Parts

1. Add packages for each part in the model package and corresponding model classes.

2. Add packages for each part in the part feature package and corresponding part feature creation functions.

3. Refactor the corresponding command class to call the newly created part feature creation function instead of the
part classes.

8.4 4. Attachment

1. Add packages for each attachment relationship in the attachment package and corresponding attachment func-
tions.

2. Refactor the corresponding command class to call the attachment function, and refactor part feature creation
function, model, and part classes as needed.

8.5 5. Cut List Generation

1. Add commands for generating a cut list.

2. Modify the build_cut_list function as needed for each part.

8.6 6. CAM File Generation

1. Modify part classes with as much detail as needed for CAM file generation. If a lot of detail is needed, then
refactor the part class to support making a simplified or detailed version.

2. If needed, created a new command for exposing the detailed version of the part and expose that to the user
through the main menu while the main toolbar exposes the simplified version for modeling purposes.

8.3. 3. Parameterize Parts 25

app_package.html#model-sub-package
model_classes.html
gui_package.html#part-feature-sub-package
app_package.html#attachment-sub-package
attachment_functions.html
attachment_functions.html

OSE Workbench Platform, Release 0.1.4

26 Chapter 8. Breakdown Strategy

CHAPTER

NINE

BRANCHING STRATEGY

OSE Workbenches should follow the Feature Branch Workflow:

The core idea behind the Feature Branch Workflow is that all feature development should take place in a
dedicated branch instead of the master branch. This encapsulation makes it easy for multiple developers
to work on a particular feature without disturbing the main codebase. It also means the master branch
will never contain broken code, which is a huge advantage for continuous integration environments.

Encapsulating feature development also makes it possible to leverage pull requests, which are a way to
initiate discussions around a branch. They give other developers the opportunity to sign off on a feature
before it gets integrated into the official project. Or, if you get stuck in the middle of a feature, you
can open a pull request asking for suggestions from your colleagues. The point is, pull requests make it
incredibly easy for your team to comment on each other’s work.

—Atlassian, Git Feature Branch Workflow

27

https://www.atlassian.com/git/tutorials/comparing-workflows/feature-branch-workflow
https://help.github.com/en/github/collaborating-with-issues-and-pull-requests/about-pull-requests
https://www.atlassian.com/git/tutorials/comparing-workflows/feature-branch-workflow

OSE Workbench Platform, Release 0.1.4

28 Chapter 9. Branching Strategy

CHAPTER

TEN

VERSIONING STRATEGY

OSE workbenches should use Semantic Versioning strategy:

Given a version number MAJOR.MINOR.PATCH, increment the:

• MAJOR version when you make incompatible API changes,

• MINOR version when you add functionality in a backwards compatible manner, and

• PATCH version when you make backwards compatible bug fixes.

Additional labels for pre-release are available as extensions to the MAJOR.MINOR.PATCH format.

—https://semver.org/

29

https://semver.org/
https://semver.org/

OSE Workbench Platform, Release 0.1.4

30 Chapter 10. Versioning Strategy

CHAPTER

ELEVEN

THIRD PARTY SERVICES

OSE workbenches rely on a number of wonderful and free third party services.

The page aims to document which external third party services we depend on and why.

Name Description
Git repository hosting and integration with Travis CI & Read the Docs.
For continuous integration.
Documentation hosting and themeing.

Hosting ose-workbench-platform conda package.
Hosting ose-workbench-platform python package.

31

https://github.com/
https://travis-ci.org/
https://en.wikipedia.org/wiki/Continuous_integration
https://readthedocs.org/
https://anaconda.org/
https://anaconda.org/gbroques/ose-workbench-platform
https://pypi.org/
https://pypi.org/project/ose-workbench-platform/

OSE Workbench Platform, Release 0.1.4

32 Chapter 11. Third Party Services

CHAPTER

TWELVE

REPOSITORY SCOPE AND NAMING

Motivation

Provide a uniform catalog of OSE workbenches.

As dicussed in Workbench Planning: Deciding on a Machine, workbenches should generally be centered around one
OSE machine in the Global Village Construction Set (GVCS).

Each workbench should have a single Git repository hosted on a centralized, publicly available, free platform like
GitHub.

12.1 Repository Naming Convention

OSE workbench repository names should be in all lower-case letters with dashes - delimiting spaces, following the
pattern ose-<machine>-workbench.

For example, the OSE workbench repository for power cubes should be named ose-power-cube-workbench.

Note, the machine name is in singular form.

33

../workbench_planning/deciding_on_a_machine.html
https://wiki.opensourceecology.org/wiki/Global_Village_Construction_Set
https://en.wikipedia.org/wiki/Git
https://github.com/

OSE Workbench Platform, Release 0.1.4

34 Chapter 12. Repository Scope and Naming

CHAPTER

THIRTEEN

ROOT REPOSITORY CONTENTS

Motivation

Ensure workbenches contain the same core elements.

The following page describes the directories and files included in the root of the repository.

$ tree -a --sort=name -L 1 -F --dirsfirst
.

docs/
freecad/<package name>/
<package name>/
tests/
CONTRIBUTING.md
environment.yml
.gitignore
LICENSE
MANIFEST.in
README.md
.readthedocs.yml
setup.py

13.1 README File

Every workbench should have a README file, named README.md, containing basic information about the project.

13.2 License File

Each workbench should include a software license in a file named LICENSE.

We recommend the GNU Lesser General Public License, version 2.1, as it’s same license as FreeCAD to ensure
workbenches could potentially be incorporated into future FreeCAD modules or FreeCAD source itself.

35

https://en.wikipedia.org/wiki/README
https://en.wikipedia.org/wiki/Software_license
https://www.gnu.org/licenses/old-licenses/lgpl-2.1.en.html
https://wiki.freecadweb.org/Licence

OSE Workbench Platform, Release 0.1.4

13.3 Contributing Guidlines

OSE workbenches should include contributing guidelines describing how people can contribute to the project inside a
file named CONTRIBUTING.md.

13.4 Library & Workbench Package

Workbenches should organize source code into two main packages:

1. A library package

2. and a workbench package

The library package should be named ose<machine>, where <machine> is the name of the machine in all lower-
case letters without spaces, hypens, or underscores.

The workbench package should be named the same as the library package, but located inside a directory named
freecad/.

For example, the library package of the ose-power-cube-workbench should be named osepowercube.

.
osepowercube/ # Library Package
freecad/osepowercube/ # Workbench Package

This naming convention follows PEP 8’s guidance on package naming:

Python packages should . . . have short, all-lowercase names, . . . the use of underscores is discouraged.

—PEP 8

For additional information, see App Gui Architecture.

13.5 Documentation

Documentation for workbenches should be located in the docs/ directory.

Hosting of documentation should be performed by Read the Docs with configuration located in .readthedocs.
yml.

13.6 Tests

Tests for workbenches should be located in the test/ directory.

36 Chapter 13. Root Repository Contents

https://help.github.com/en/github/building-a-strong-community/setting-guidelines-for-repository-contributors
https://www.python.org/dev/peps/pep-0008/#package-and-module-names
https://www.python.org/dev/peps/pep-0008/#package-and-module-names
app_gui_architecture.html
https://readthedocs.org/

OSE Workbench Platform, Release 0.1.4

13.7 Continuous Integration

Workbenches should use Travis CI for Continuous Integration (CI).

Following the Feature Branch Workflow, each feature branch will be tested to ensure it doesn’t break existing code
before that branch is merged into the master branch.

Configuration for Travis CI is located within a file named .travis.yml.

13.8 Setup Module

Workbenches should include a setup.py module for describing how to package and distribute the workbench as a
Python package.

13.9 MANIFEST.in

The MANIFEST.in file describes additional files to include in the Python package distribution.

For more information, see Including files in source distributions with MANIFEST.in.

13.10 environment.yml

The environment.yml file describes how to create a conda environment for local workbench development.

13.11 .gitignore

A .gitignore file should be included to specify any directories and files that shouldn’t be checked into version control.

13.7. Continuous Integration 37

https://travis-ci.org/
https://en.wikipedia.org/wiki/Continuous_integration
https://www.atlassian.com/git/tutorials/comparing-workflows/feature-branch-workflow
https://packaging.python.org/guides/using-manifest-in/
https://git-scm.com/docs/gitignore

OSE Workbench Platform, Release 0.1.4

38 Chapter 13. Root Repository Contents

CHAPTER

FOURTEEN

APP GUI ARCHITECTURE

Motivation

Encapsulate source code and separate the geometry of parts from their graphical representation.

FreeCAD is made from the beginning to work as a command-line application without its user interface. There-
fore, almost everything is separated between a “geometry” component and a “visual” component. When you execute
FreeCAD in command-line mode, the geometry part is present, but the visual part is absent.

For more information, see “Python scripting tutorial - App and Gui”, on the FreeCAD Wiki.

OSE workbenches mirror this structure, and separate code into two main sub-packages:

1. A library package containing App functionality

2. A workbench package containing Gui functionality

In doing so, workbenches gain the following advantages:

• Provide the ability to run the library package from a command-line context, similar to FreeCAD

• Encapsulate logic in the library package, and keep the workbench package “dumb”

• Make the library package easy to write unit tests for

At a high-level, the library package contains code related to the geometry of parts, and how those parts relate to each
other.

While the workbench package contains code related to the graphical user interface of FreeCAD, such as what happens
when users interact with the workbench (e.g. a user clicks a button on a toolbar), or various components the user may
interact with such as dialogs or panels.

Code in the workbench package may reference code in the library package, while the reverse is not true.

The main goal of this rule is to decouple machine-specific knowledge, such as the geometry of parts, from it’s graphical
representation.

In doing so, theoretically, other frontends besides FreeCAD’s GUI can be used to display and interact with OSE’s
machines. For example, imagine other desktop, web, or mobile applications.

See Library Package and Workbench Package for additional information.

39

https://wiki.freecadweb.org/Python_scripting_tutorial#App_and_Gui
library_package.html
workbench_package.html

OSE Workbench Platform, Release 0.1.4

40 Chapter 14. App Gui Architecture

CHAPTER

FIFTEEN

LIBRARY PACKAGE

Motivation

Organize code related to the geometry parts, and allow parts to be made from a command-line context.

The library package, located within the root level of the repository, contains code for the geometry of parts, and how
those parts relate to each other.

The “geometry of parts” is defined as:

• Geometric primitives that make up parts such as vertexes, edges, and faces

• Basic shapes such as boxes, circles, cones, and cylinders

• and operations on, or between these primitives and basic shapes such as extrusion, chamfer, union, difference,
or intersection.

For a formal introduction to these concepts, see Solid modeling, Constructive solid geometry, and Boundary represen-
tation.

FreeCAD exposes the ability to define and manipulate the geometry of parts through it’s Part module.

See the FreeCAD Wiki on Creating and manipulating geometry, and Topological data scripting for additional details.

15.1 Sub-packages

The following are typical sub-packages the library package may contain:

<library package>/
part/
model/
attachment/
__init__.py

Note: The library package typically only contains sub-packages without any direct modules.

41

https://en.wikipedia.org/wiki/Extrusion
https://en.wikipedia.org/wiki/Chamfer
https://en.wikipedia.org/wiki/Union_(set_theory)
https://en.wikipedia.org/wiki/Complement_(set_theory)
https://en.wikipedia.org/wiki/Intersection_(set_theory)
https://en.wikipedia.org/wiki/Solid_modeling
https://en.wikipedia.org/wiki/Constructive_solid_geometry
https://en.wikipedia.org/wiki/Boundary_representation
https://en.wikipedia.org/wiki/Boundary_representation
https://wiki.freecadweb.org/Part_Module
https://wiki.freecadweb.org/Manual:Creating_and_manipulating_geometry
https://wiki.freecadweb.org/Topological_data_scripting

OSE Workbench Platform, Release 0.1.4

15.2 Part Sub-package

The part sub-package exposes Part Classes encapsulating the geometry for parts, and is made up of further private
sub-packages for each part.

For example, the part package in the ose-3d-printer-workbench contains the following:

<library package>/part/
_axis/
_extruder/
_frame/
_heated_bed/
__init__.py

The _axis/ package exposes an Axis class for “making” the geometry of an axis.

Similarly, the _extruder/ package exposes an Extruder class, _heated_bed/ exposes a HeatedBed class,
and _frame/ exposes multiple classes related to a frame.

All the exposed part classes are imported within the __init__.py file, and declared public using __all__:

"""Parts for a 3D Printer."""
from ._axis import Axis
from ._extruder import Extruder
from ._frame import AngledBarFrame, AngleFrameConnector, CNCCutFrame
from ._heated_bed import HeatedBed

__all__ = [
'AngleFrameConnector',
'AngledBarFrame',
'Axis',
'CNCCutFrame',
'Extruder',
'HeatedBed'

]

Tip: It’s best-practice to include docstring for all public packages.

For more information on part classes themselves, see Part Classes.

15.3 Model Sub-package

The model sub-package exposes Model Classes for making the static geometry of part classes dynamic.

For example, the model package in the ose-3d-printer-workbench contains the following:

<library package>/model
_axis/
_extruder/
_frame/
_heated_bed/
__init__.py

The _axis/ package exposes an AxisModel class for “making” the geometry of the Axis part class dynamic.

42 Chapter 15. Library Package

part_classes.html
part_classes.html
model_classes.html

OSE Workbench Platform, Release 0.1.4

Similarly, the _extruder/ package exposes an ExtruderModel class, _heated_bed/ exposes a
HeatedBedModel class, and _frame/ exposes a FrameModel class.

All the exposed model classes are imported within the __init__.py file, and declared public using __all__:

"""Models for 3D Printer parts."""
from ._axis import AxisModel
from ._extruder import ExtruderModel
from ._frame import FrameModel
from ._heated_bed import HeatedBedModel

__all__ = [
'AxisModel',
'ExtruderModel',
'FrameModel',
'HeatedBedModel'

]

For more information on model classes themselves, see Model Classes.

15.4 Attachment Sub-package

The attachment sub-package exposes Attachment Functions that return keyword arguments to make one part ap-
pear “attached to” another.

For example, the attachment package in the ose-3d-printer-workbench contains the following:

<library package>/attachment
_get_axis_frame_attachment_kwargs/
_get_extruder_axis_attachment_kwargs/
_get_heated_bed_frame_axis_attachment_kwargs/
__init__.py

The _get_axis_frame_attachment_kwargs/ package exposes an _get_axis_frame_attachment_kwargs
function for “attaching” the axis to the frame.

Similarly, the _get_extruder_axis_attachment_kwargs/ package exposes a
get_extruder_axis_attachment_kwargs function, and _get_heated_bed_frame_axis_attachment_kwargs/
exposes a get_heated_bed_frame_axis_attachment_kwargs function.

All the exposed attachment functions are imported within the __init__.py file, and declared public using
__all__:

"""Attachment functions to make 3D Printer parts appear attached to each other."""
from ._get_axis_frame_attachment_kwargs import (

get_axis_frame_attachment_kwargs, get_default_axis_creation_kwargs)
from ._get_extruder_axis_attachment_kwargs import \

get_extruder_axis_attachment_kwargs
from ._get_heated_bed_frame_axis_attachment_kwargs import \

get_heated_bed_frame_axis_attachment_kwargs

__all__ = [
'get_axis_frame_attachment_kwargs',
'get_default_axis_creation_kwargs',
'get_extruder_axis_attachment_kwargs',
'get_heated_bed_frame_axis_attachment_kwargs'

]

15.4. Attachment Sub-package 43

model_classes.html
attachment_functions.html

OSE Workbench Platform, Release 0.1.4

For more information on attachment functions themselves, see Attachment Functions.

44 Chapter 15. Library Package

attachment_functions.html

CHAPTER

SIXTEEN

PART CLASSES

Motivation

Encapsulate how the geometry of a part is made.

Parts are often thought about as real world objects, and therefore fit nicely into the paradigm of Object Oriented
Programming (OOP) as classes.

Each part class has the single-responsibility to “make” the geometry for a given part.

For example, you might have a Box class with a make method that encapsulates and exposes how to create the
geometry of a box.

import Part

class Box:

@staticmethod
def make():

box = Part.makeBox(10, 10, 10)
return box

Note: Naming the method make is a convention inspired by FreeCAD’s make* Part API.

While in this trivial example the Box class and make method don’t provide much value, this abstraction offers a
simple interface for “making” more complex and custom geometry.

For example, you may pass in the length and width into the make method as parameters for creating boxes of
different sizes.

class Box:

@staticmethod
def make(length, width):

height = 10
box = Part.makeBox(length, width, height)
return box

We could have defined a make_box function instead, but why is the class approach preferable?

Imagine the box is a sub-part of a more complex part, and that parent part needs to know about the static height of
10 for the box.

45

https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Single-responsibility_principle
https://wiki.freecadweb.org/Part_API

OSE Workbench Platform, Release 0.1.4

With a quick refactor, the parent part can now access the height of the Box as a static property, and that information
stays close to the construction of the box geometry, as opposed to being defined somewhere else in the program via
constants or some other approach.

class Box:

height = 10

@classmethod
def make(cls, length, width):

box = Part.makeBox(length, width, cls.height)
return box

46 Chapter 16. Part Classes

CHAPTER

SEVENTEEN

MODEL CLASSES

Motivation

Encapsulate values and persistence of user-configurable properties for parts.

Model classes act as extensions to Part Classes, for when you want dynamic geometry, or parameteric properties the
user can manipulate in FreeCAD’s GUI within the Property Editor after the part is made.

For example, extending our Box part class to make the length and width editable by the user:

from example.app.part import Box

class BoxModel:

def __init__(self, obj):
self.Type = 'Box'

obj.Proxy = self

obj.addProperty('App::PropertyLength', 'Length',
'Dimensions', 'Box length').Length = 10.0

obj.addProperty('App::PropertyLength', 'Width',
'Dimensions', 'Box width').Width = 10.0

def execute(self, obj):
obj.Shape = Box.make(obj.Length, obj.Width)

The constructor or __init__ method initializes the parameteric properties, and the execute method handles the
construction of the geometry.

Colloquially known in the FreeCAD community as FeaturePython Objects or Scripted Objects, we choose the name
“model” as we believe the terms “feature python object” or “scripted object” are not accurate enough and are poten-
tially misleading.

Additionally, model classes handle serialization, or saving and restoring data through App::Property objects.
This is a similar role to what some frameworks call a Data Transfer Object (DTO).

Model objects are saved in FreeCAD .FcStd files with Python’s json module.

The json module transforms the model object into JSON (a string with a special format) for persisting the object to
disk. Upon loading FreeCAD, the json module uses that string to recreate the original object, provided it has access
to the source code that created the object.

47

part_classes.html
https://wiki.freecadweb.org/Property_editor
https://wiki.freecadweb.org/FeaturePython_Objects
https://wiki.freecadweb.org/Scripted_objects
https://wiki.freecadweb.org/File_Format_FCStd

OSE Workbench Platform, Release 0.1.4

Important: This means users need to have the workbench installed in order to open any FCStd files with model
classes saved in them.

Another motivation for the separation of part classes from model classes is to keep the “shape” separate from the
persistence of dynamic properties to disk.

Sometimes, you don’t want to force users to install a workbench in order to open FCStd files with particular parts in
them.

Therfore, converting a model to a “shape” using a part class can be useful.

Hint: The platform may standardize a to_shape() method on model classes for this purpose in the future.

For additional information, see the FreeCAD Wiki on FeaturePython Objects and Scripted Objects.

48 Chapter 17. Model Classes

part_classes.html
https://wiki.freecadweb.org/FeaturePython_Objects
https://wiki.freecadweb.org/Scripted_objects

CHAPTER

EIGHTEEN

ATTACHMENT FUNCTIONS

Motivation

Make parts appear attached to each other.

Attachment functions return keyword arguments to make one part to appear “attached to” another.

Each attachment function is named following the pattern get_<attachee part>_<attached to
part>_attachment_kwargs where:

• <attachee part> is the part being attached to another part

• and <attached to part> is the part getting attached to

Attachment functions returns a dictionary {}, or set of keyword arguments (a.k.a “kwargs”) for the attachee part.

The keyword arguments typically describe parameters like placement and orientation the attachee part must be in to
appear “attached to” the desired part.

18.1 An Example

Let’s take a concrete example from the ose-3d-printer-workbench.

Consider attaching an axis to the frame in a D3D printer, and the get_axis_frame_attachment_kwargs attachment
function.

def get_axis_frame_attachment_kwargs(frame,
selected_frame_face,
axis_orientation):

...

First, let’s deconstruct the name.

The attachee part is the axis, and the part getting attached-to is the frame.

The first argument to the attachment function is always the attached-to part. In this case, the frame.

Other arguments will vary from attachment function to attachment function depending upon requirements, but might
include selected faces, or other parts.

In this case, the second and third arguments are the face the user selected (selected_frame_face), and the
selected orientation of the axis (axis_orienation).

Consider the dictionary, or axis kwargs, get_axis_frame_attachment_kwargs returns when attaching the
axis to the front face of the frame:

49

https://docs.python.org/3/tutorial/datastructures.html#dictionaries
https://docs.python.org/3/glossary.html#term-argument
https://github.com/gbroques/ose-3d-printer-workbench
https://github.com/gbroques/ose-3d-printer-workbench/tree/master/ose3dprinter/app/attachment/get_axis_frame_attachment_kwargs

OSE Workbench Platform, Release 0.1.4

{
"carriage_position": 90,
"placement": Placement [Pos=(152.4,0,0), Yaw-Pitch-Roll=(0,0,0)],
"orientation": "z",
"origin_translation_offset": Vector (-0.5, -1.0, 0.0),
"length": "304.8 mm",
"side": "front"

}

Fig. 1: Attaching axis to front face of frame

These keyword arguments describe how to make the axis geometry appear attached to the desired position on the
frame.

50 Chapter 18. Attachment Functions

CHAPTER

NINETEEN

WORKBENCH PACKAGE

Motivation

Organize code related to the graphical representation of parts and a workbench.

The workbench package, located within the freecad/ directory, contains code related to the graphical user interface
of FreeCAD, such as what happens when users interact with the workbench (e.g. a user clicks a button on a toolbar),
or various components the user may interact with such as dialogs or panels.

freecad/<workbench package>/
command/
icon/
part_feature/
__init__.py
init_gui.py
OSE_<Machine_Name>.py

19.1 init_gui.py

Every workbench will have a init_gui.py module within the workbench package.

The init_gui.pymodule contains a single workbench class that extends Gui.Workbench following the pattern
<Machine>Workbench, where <Mahcine> is the name of the machine in pascal or UpperCamelCase.

For example, the workbench class for OSE’s Tractor Workbench will be located inside the init_gui.py module
and named TractorWorkbench:

import FreeCAD as App
import FreeCADGui as Gui

from .icon import get_icon_path
from .OSE_Tractor import register_commands

class TractorWorkbench(Gui.Workbench):
"""
Tractor Workbench
"""
MenuText = 'OSE Tractor'
ToolTip = \

'A workbench for designing Tractor machines by Open Source Ecology'

(continues on next page)

51

OSE Workbench Platform, Release 0.1.4

(continued from previous page)

Icon = get_icon_path('Tractor.svg')

def Initialize(self):
"""
Executed when FreeCAD starts
"""
main_toolbar, main_menu = register_commands()

self.appendToolbar('OSE Tractor', main_toolbar)
self.appendMenu('OSE Tractor', main_menu)

def Activated(self):
"""
Executed when workbench is activated.
"""
if not(App.ActiveDocument):

App.newDocument()

def Deactivated(self):
"""
Executed when workbench is deactivated.
"""
pass

def GetClassName(self):
return 'Gui::PythonWorkbench'

Gui.addWorkbench(TractorWorkbench())

Important: FreeCAD imports this module when it initializes it’s GUI. The last statement in init_gui.py instan-
tiates the workbench class and adds it to FreeCAD via Gui.addWorkbench.

For a complete reference of the Gui.Workbench class, see Gui::PythonWorkbench Class Reference.

19.2 Command Sub-package

The command sub-package exposes Command Classes that are executed when users perform various actions in the
workbench such as clicking a button in a toolbar or selecting an option in a menu.

For example, the command package in the ose-3d-printer-workbench contains the following:

freecad/<workbench package>/command
_add_axis/
_add_extruder/
_add_frame/
_add_heated_bed/
__init__.py

The _add_axis/ package exposes an AddAxisCommand that’s executed when the user wants to add an axis to the
document.

Similarly, the _add_extruder/ package exposes an AddExtruderCommand class, _add_frame/ exposes
AddFrameCommand, and _heated_bed/ exposes AddHeatedBed.

52 Chapter 19. Workbench Package

https://www.freecadweb.org/api/d1/d9a/classGui_1_1PythonWorkbench.html
command_classes.html

OSE Workbench Platform, Release 0.1.4

For more information on command classes themselves, see Command Classes.

19.3 Command Registry Module

Every workbench contains a command registry module within the workbench package.

The command registry module is where all commands are imported, registered via Gui.addCommand, and associ-
ated together into lists for adding to toolbars or menus.

The command registry module name follows the pattern OSE_<Machine>.py, where <Machine> is the name of
the machine, with spaces delimited by underscores _.

For example, the command registry module name for the 3D Printer workbench is named OSE_3D_Printer.py.

Normally python modules use all lower-case letters, so why the deviation?

FreeCAD derives a “Category” to organize commands from the name of the Python module where Gui.
addCommand is called.

Since all commands in the workbench are registered with Gui.addCommand in a Python module called
OSE_3D_Printer.py, the derived “Category” for grouping these commands is “OSE_3D_Printer”.

When you register custom commands for an external workbench via Gui.addCommand(commandName,
commandObject), FreeCAD adds the command to it’s global command registry.

To avoid name collisions and ensure uniqueness, a command name is typically prefixed with the name of the module
and underscore. For example, “Part_Cylinder” or “OSE3DP_AddFrame”.

The command registry module handles prefixing a unique namespace to the name of your command for you.

19.3. Command Registry Module 53

command_classes.html

OSE Workbench Platform, Release 0.1.4

In this way, if in the future we need to change the name of our command namespace (e.g. “OSE3DP”) because it
collides with another external workbench, then the change is easy.

You can see a simple and relatively complete command registry module example based on the
ose-3d-printer-workbench below:

import FreeCADGui as Gui

from .command import AddExtruderCommand, AddFrameCommand, AddHeatedBedCommand

#: Command Namespace: Must be unique to all FreeCAD workbenches.
command_namespace = 'OSE3DP'

def register_commands():
"""
Register all workbench commands,
and associate them to toolbars, menus, sub-menus, and context menu.
"""
add_frame_key = _register(AddFrameCommand.NAME, AddFrameCommand())
add_heated_bed_key = _register(

AddHeatedBedCommand.NAME, AddHeatedBedCommand())
add_extruder_key = _register(AddExtruderCommand.NAME, AddExtruderCommand())

#: Main Toolbar Commands
main_toolbar_commands = [

add_frame_key,
add_heated_bed_key,
add_extruder_key

]
return main_toolbar_commands

def _register(name, command):
key = '{}_{}'.format(command_namespace, name)
Gui.addCommand(key, command)
return key

__all__ = ['register_commands']

19.4 Icon Sub-package

The icon sub-package contains icons for the workbench (typically in .svg format) and exposes a get_icon_path
function that takes the name of an icon file and returns the absolute path to the icon.

from .icon import get_icon_path

get_icon_path('MyIcon.svg') # => /home/user/.FreeCAD/Mod/my-workbench/myworkbench/gui/
→˓icon/MyIcon.svg

54 Chapter 19. Workbench Package

OSE Workbench Platform, Release 0.1.4

19.5 Part Feature Sub-package

The part_feature sub-package exposes functions to create Part Feature objects.

For example, the part_feature package in the ose-3d-printer-workbench contains the following:

freecad/<workbench package>/part_feature
_axis/
_extruder/
_frame/
_heated_bed/
__init__.py

The _axis/ package exposes a create_axis function that creates and adds an axis part feature object to a speci-
fied document.

Similarly, the _extruder/ package exposes a create_extruder function, _frame/ exposes
create_frame, and _heated_bed/ exposes create_heated_bed.

A simple example of a part feature creation function looks like:

from ose3dprinter.app.model import AxisModel

def create_axis(document, name):
"""
Creates a axis object with the given name,
and adds it to a document.
"""
obj = document.addObject('Part::FeaturePython', name)
AxisModel(obj)
obj.ViewObject.Proxy = 0 # Mandatory unless ViewProvider is coded
return obj

The single responsibility of a part feature creation function is to add a Part::FeaturePython to a document, and
decorate it with a model class, and optionally a view provider.

19.5. Part Feature Sub-package 55

https://wiki.freecadweb.org/Part_Feature
https://wiki.freecadweb.org/Viewprovider

OSE Workbench Platform, Release 0.1.4

56 Chapter 19. Workbench Package

CHAPTER

TWENTY

COMMAND CLASSES

Motivation

Encapsulate action users can perform when interacting with FreeCAD’s UI.

Command Classes are executed when users perform various actions in the workbench such as clicking a button in a
toolbar or selecting an option in a menu.

OSE Workbench Command Classes are an opinionated extension to FreeCAD Command Classes with the following
observed conventions:

1. Names sound like actions, typically begin with verbs, and always end with a “command” suffix

• For example, a command class to add a frame to the document might be named AddFrameCommand

• The command should be located in a module named after the command (e.g. add_frame_command.
py)

2. Have a static NAME string constant

• Typically the same name as the command (e.g. 'AddFrameCommand')

Important: NAME must be unique for all commands within the scope of the workbench

3. Located and exposed by the command sub-package of the workbench package.

freecad/ose3dprinter/command
_add_frame/

add_frame_command.py
__init__.py

__init__.py

Within _add_frame/__init__.py:

from .add_frame_command import AddFrameCommand

__all__ = ['AddFrameCommand']

Within freecad/ose3dprinter/command/__init__.py:

"""Commands users can perform in FreeCAD's GUI."""
from ._add_frame import AddFrameCommand

__all__ = ['AddFrameCommand',]

57

https://wiki.freecadweb.org/Command
workbench_package.html

OSE Workbench Platform, Release 0.1.4

The following is a complete example taken from the ose-3d-printer-workbench:

import FreeCAD as App

from freecad.ose3dprinter.icon import get_icon_path
from freecad.ose3dprinter.part_feature import create_frame

class AddFrameCommand:
"""
Command to add Frame object.
"""

NAME = 'AddFrame'

def Activated(self):
document = App.ActiveDocument
if not document:

document = App.newDocument()
create_frame(document, 'Frame')
document.recompute()

def IsActive(self):
return True

def GetResources(self):
return {

'Pixmap': get_icon_path('Frame.svg'),
'MenuText': 'Add Frame',
'ToolTip': 'Add Frame'

}

For additional information, see Command on the FreeCAD Wiki.

58 Chapter 20. Command Classes

https://github.com/gbroques/ose-3d-printer-workbench/tree/master/ose3dprinter/gui/command/add_frame
https://wiki.freecadweb.org/Command

CHAPTER

TWENTYONE

OSE WORKBENCH ECOSYSTEM

This document aims to catalog the OSE Workbench Ecosystem – or collection of projects relating to OSE Work-
benches.

In general, there are OSE workbenches, and OSE workbench libraries.

OSE workbenches have a FreeCAD frontend, while OSE workbench libraries are a collection of code to be leveraged
by OSE workbenches.

21.1 OSE Workbenches

Logo Name Documentation
3D Printer https://ose-3d-printer-workbench.readthedocs.io/en/latest/

21.2 OSE Workbench Libraries

Logo Name Documentation
Workbench Core https://ose-workbench-core.readthedocs.io/en/latest/

21.3 UML Diagram

The below UML diagram shows the relationships between different components in the OSE Workbench Ecosystem.

The dashed lines represent dependencies.

59

https://ose-3d-printer-workbench.readthedocs.io/en/latest/
https://ose-workbench-core.readthedocs.io/en/latest/

OSE Workbench Platform, Release 0.1.4

60 Chapter 21. OSE Workbench Ecosystem

CHAPTER

TWENTYTWO

OSEWB

22.1 osewb.docs

22.1.1 osewb.docs.ext

Custom Sphinx Extensions for OSE Workbenches.

These extensions designed to be externalized into separate projects if others are interested in using them.

all_summary_table

Name Description
setup Setup extension.

setup(app: sphinx.application.Sphinx)→ None
Setup extension.

Parameters app – application object controlling high-level functionality, such as the setup of exten-
sions, event dispatching, and logging. See Also: https://www.sphinx-doc.org/en/master/extdev/
appapi.html#sphinx.application.Sphinx

freecad_custom_property_table

Adds a .. fc-custom-property-table:: directive to create a table documenting the properties of custom
FreeCAD objects.

Must add the .. fc-custom-property-table:: directive to the docstring of a scripted object class:

class BoxModel:
"""
.. fc-custom-property-table::
"""

Or pass the path to the class as an optional argument:

.. fc-custom-property-table:: examples.box_model.BoxModel

61

https://www.sphinx-doc.org/en/master/extdev/appapi.html#sphinx.application.Sphinx
https://www.sphinx-doc.org/en/master/extdev/appapi.html#sphinx.application.Sphinx

OSE Workbench Platform, Release 0.1.4

Supports a remove_app_property_prefix_from_type configuration value to remove the
App::Property prefix from the Type. Defaults to False.

These objects are also known as “FeaturePython Objects” or “Scripted Objects” in the FreeCAD community.

See BoxModel for an example.

class FreeCADCustomPropertyTable(name, arguments, options, content, lineno, content_offset,
block_text, state, state_machine)

Bases: sphinx.util.docutils.SphinxDirective

has_content = False

optional_arguments = 1

run()

create_table_row(row_cells)

setup(app: <module 'FreeCAD' from '/home/docs/checkouts/readthedocs.org/user_builds/ose-workbench-
platform/conda/latest/lib/FreeCAD.so'>)→ None

Setup extension.

Parameters app – application object controlling high-level functionality, such as the setup of exten-
sions, event dispatching, and logging. See Also: https://www.sphinx-doc.org/en/master/extdev/
appapi.html#sphinx.application.Sphinx

freecad_icon

fcicon_role(name: str, rawtext: str, text: str, lineno: int, inliner: docutils.parsers.rst.states.Inliner, op-
tions: dict = {}, content: List[str] = [])

FreeCAD Icon role function.

Returns 2 part tuple containing list of nodes to insert into the document and a list of system messages. Both are
allowed to be empty.

For additional information on role functions, see:

• https://docutils.readthedocs.io/en/sphinx-docs/howto/rst-roles.html

• https://doughellmann.com/blog/2010/05/09/defining-custom-roles-in-sphinx/

Parameters

• name – The role name used in the document.

• rawtext – The entire markup snippet, with role.

• text – The text marked with the role.

• lineno – The line number where rawtext appears in the input.

• inliner – The inliner instance that called us.

• options – Directive options for customization.

• content – The directive content for customization.

make_image_node(freecad_icon_directory: str, alt: str, size: str, filename: str)→ docutils.nodes.image
Make image node for icon.

Parameters

• freecad_icon_directory – Directory to FreeCAD Icons.

62 Chapter 22. osewb

examples/examples.html#module-examples.box_model
https://www.sphinx-doc.org/en/master/extdev/appapi.html#sphinx.application.Sphinx
https://www.sphinx-doc.org/en/master/extdev/appapi.html#sphinx.application.Sphinx
https://docutils.readthedocs.io/en/sphinx-docs/howto/rst-roles.html
https://doughellmann.com/blog/2010/05/09/defining-custom-roles-in-sphinx/

OSE Workbench Platform, Release 0.1.4

• alt – Alt text of icon.

• size – Must be one of “sm” (small), “md”, (medium), or “lg” (large).

• filename – Filename of icon.

setup(app: sphinx.application.Sphinx)→ None
Setup extension.

Parameters app – application object controlling high-level functionality, such as the setup of exten-
sions, event dispatching, and logging. See Also: https://www.sphinx-doc.org/en/master/extdev/
appapi.html#sphinx.application.Sphinx

osewb_docstring_process

Name Description
setup Setup extension.

setup(app: sphinx.application.Sphinx)→ None
Setup extension.

Parameters app – application object controlling high-level functionality, such as the setup of exten-
sions, event dispatching, and logging. See Also: https://www.sphinx-doc.org/en/master/extdev/
appapi.html#sphinx.application.Sphinx

22.1.2 conf

Shared base configuration for OSE workbench documentation.

22.2 check_for_executable_in_path

check_for_executable_in_path(executable_name)→ None

22.3 execute_command

chain_commands(*commands: str, env: dict = {}, exit_on_non_zero_code: bool = True)→ List[int]

execute_command(command: str, env: dict = {}, exit_on_non_zero_code: bool = True)→ int

22.4 find_base_package

exec_git_command(git_command: str)→ Optional[str]
Find the root of the current git repository.

Returns None if there’s an error, or not in a git repository.

Parameters git_command – git command string

Returns path to root of git repository

22.2. check_for_executable_in_path 63

https://www.sphinx-doc.org/en/master/extdev/appapi.html#sphinx.application.Sphinx
https://www.sphinx-doc.org/en/master/extdev/appapi.html#sphinx.application.Sphinx
https://www.sphinx-doc.org/en/master/extdev/appapi.html#sphinx.application.Sphinx
https://www.sphinx-doc.org/en/master/extdev/appapi.html#sphinx.application.Sphinx

OSE Workbench Platform, Release 0.1.4

find_base_package()→ Optional[str]
Find the base package in a workbench repository.

Return None if not in a git repository, or no directory in the root of the repository starts with “ose”.

If multiple directories in the root of the repository start with “ose”, then we return the first match.

Returns Base package of workbench repository.

find_git_user_name()→ Optional[str]
Find the user name defined by git config.

Returns Git user name

find_root_of_git_repository()→ Optional[str]
Find the root of the current git repository.

Returns None if there’s an error, or not in a git repository.

Returns path to root of git repository

22.5 handle_browse_command

handle_browse_command(root_of_git_repository: str, browse_subcommand: str)→ None

22.6 handle_build_command

handle_build_command()→ None

22.7 handle_docs_command

handle_docs_command(base_package, root_of_git_repository)→ None

remove_existing_directory_recursively(directory: str)→ None

22.8 handle_editor_config_command

get_editor_config()→ dict

get_vs_code_workspace_settings(root_of_git_repository: str)→ Optional[dict]

get_vs_code_workspace_settings_path(root_of_git_repository: str)→ pathlib.Path
Get the path to VS Code workspace settings.

See Also: https://code.visualstudio.com/docs/getstarted/settings#_settings-file-locations

handle_editor_config_command(root_of_git_repository: str, merge_workspace_settings: bool =
False, overwrite_workspace_settings: bool = False)→ None

path(filename: str)→ str

query_yes_no(question, additional_pre_information: Optional[str] = None, default: str = 'yes')
Ask a yes/no question via raw_input() and return their answer.

64 Chapter 22. osewb

https://code.visualstudio.com/docs/getstarted/settings#_settings-file-locations

OSE Workbench Platform, Release 0.1.4

“question” is a string that is presented to the user. “default” is the presumed answer if the user just hits <Enter>.
It must be “yes” (the default), “no” or None (meaning an answer is required of the user).

The “answer” return value is True for “yes” or False for “no”.

22.9 handle_lint_command

handle_lint_command(root_of_git_repository: str, should_fix: bool = False)→ None

22.10 handle_make_component_command

22.11 handle_make_workbench_command

22.12 handle_test_command

find_coverage_package(root_of_git_repository: str, base_package: str)→ str

handle_test_command(base_package: str, root_of_git_repository: str, with_coverage: bool = False)→
None

is_workbench(root_of_git_repository: str)→ bool

22.13 osewb

22.14 part_screenshot

Utility script to automatically create thumbnail screenshots of parts.

Run with freecad -c part_screenshot.py when conda environment is activated.

format_list(l)

get_required_arguments(make_method)→ List[str]

main()

22.9. handle_lint_command 65

OSE Workbench Platform, Release 0.1.4

66 Chapter 22. osewb

CHAPTER

TWENTYTHREE

EXAMPLES

This example package is meant to test and exemplify OSE Workbench Platform Sphinx extensions found in osewb.
docs.ext.

23.1 examples.model

Example model package.

Name Description
BoxModel Encapsulates the data (i.e. topography and shape) for a Box,

class BoxModel(obj)
Bases: object

Encapsulates the data (i.e. topography and shape) for a Box, and is separate from the “view” or GUI represen-
tation.

Name Type Default Value Description
Height App::PropertyLength 10.0 mm Box height
Length App::PropertyLength 10.0 mm Box length
Width App::PropertyLength 10.0 mm Box width

execute(obj)

23.2 examples.part

Example part package.

Name Description
Box Represents a box.

class Box
Bases: object

Represents a box.

67

OSE Workbench Platform, Release 0.1.4

static make()→ Part.Shape
Make a box.

Returns The shape of a box.

Return type Part.Shape

68 Chapter 23. examples

CHAPTER

TWENTYFOUR

INDICES AND TABLES

• genindex

• modindex

• search

69

OSE Workbench Platform, Release 0.1.4

70 Chapter 24. Indices and tables

PYTHON MODULE INDEX

e
examples, 67
examples.model, 67
examples.part, 67

o
osewb, 61
osewb.check_for_executable_in_path, 63
osewb.docs, 61
osewb.docs.conf, 63
osewb.docs.ext, 61
osewb.docs.ext.all_summary_table, 61
osewb.docs.ext.freecad_custom_property_table,

61
osewb.docs.ext.freecad_icon, 62
osewb.docs.ext.osewb_docstring_process,

63
osewb.execute_command, 63
osewb.find_base_package, 63
osewb.handle_browse_command, 64
osewb.handle_build_command, 64
osewb.handle_docs_command, 64
osewb.handle_editor_config_command, 64
osewb.handle_lint_command, 65
osewb.handle_test_command, 65
osewb.part_screenshot, 65

71

OSE Workbench Platform, Release 0.1.4

72 Python Module Index

INDEX

B
Box (class in examples.part), 67
BoxModel (class in examples.model), 67

C
chain_commands() (in module os-

ewb.execute_command), 63
check_for_executable_in_path() (in module

osewb.check_for_executable_in_path), 63
create_table_row() (in module os-

ewb.docs.ext.freecad_custom_property_table),
62

E
examples

module, 67
examples.model

module, 67
examples.part

module, 67
exec_git_command() (in module os-

ewb.find_base_package), 63
execute() (BoxModel method), 67
execute_command() (in module os-

ewb.execute_command), 63

F
fcicon_role() (in module os-

ewb.docs.ext.freecad_icon), 62
find_base_package() (in module os-

ewb.find_base_package), 63
find_coverage_package() (in module os-

ewb.handle_test_command), 65
find_git_user_name() (in module os-

ewb.find_base_package), 64
find_root_of_git_repository() (in module

osewb.find_base_package), 64
format_list() (in module osewb.part_screenshot),

65
FreeCADCustomPropertyTable (class in os-

ewb.docs.ext.freecad_custom_property_table),
62

G
get_editor_config() (in module os-

ewb.handle_editor_config_command), 64
get_required_arguments() (in module os-

ewb.part_screenshot), 65
get_vs_code_workspace_settings() (in mod-

ule osewb.handle_editor_config_command), 64
get_vs_code_workspace_settings_path()

(in module os-
ewb.handle_editor_config_command), 64

H
handle_browse_command() (in module os-

ewb.handle_browse_command), 64
handle_build_command() (in module os-

ewb.handle_build_command), 64
handle_docs_command() (in module os-

ewb.handle_docs_command), 64
handle_editor_config_command() (in module

osewb.handle_editor_config_command), 64
handle_lint_command() (in module os-

ewb.handle_lint_command), 65
handle_test_command() (in module os-

ewb.handle_test_command), 65
has_content (FreeCADCustomPropertyTable at-

tribute), 62

I
is_workbench() (in module os-

ewb.handle_test_command), 65

M
main() (in module osewb.part_screenshot), 65
make() (Box static method), 67
make_image_node() (in module os-

ewb.docs.ext.freecad_icon), 62
module

examples, 67
examples.model, 67
examples.part, 67
osewb, 61

73

OSE Workbench Platform, Release 0.1.4

osewb.check_for_executable_in_path,
63

osewb.docs, 61
osewb.docs.conf, 63
osewb.docs.ext, 61
osewb.docs.ext.all_summary_table, 61
osewb.docs.ext.freecad_custom_property_table,

61
osewb.docs.ext.freecad_icon, 62
osewb.docs.ext.osewb_docstring_process,

63
osewb.execute_command, 63
osewb.find_base_package, 63
osewb.handle_browse_command, 64
osewb.handle_build_command, 64
osewb.handle_docs_command, 64
osewb.handle_editor_config_command,

64
osewb.handle_lint_command, 65
osewb.handle_test_command, 65
osewb.part_screenshot, 65

O
optional_arguments (FreeCADCustomProper-

tyTable attribute), 62
osewb

module, 61
osewb.check_for_executable_in_path

module, 63
osewb.docs

module, 61
osewb.docs.conf

module, 63
osewb.docs.ext

module, 61
osewb.docs.ext.all_summary_table

module, 61
osewb.docs.ext.freecad_custom_property_table

module, 61
osewb.docs.ext.freecad_icon

module, 62
osewb.docs.ext.osewb_docstring_process

module, 63
osewb.execute_command

module, 63
osewb.find_base_package

module, 63
osewb.handle_browse_command

module, 64
osewb.handle_build_command

module, 64
osewb.handle_docs_command

module, 64
osewb.handle_editor_config_command

module, 64
osewb.handle_lint_command

module, 65
osewb.handle_test_command

module, 65
osewb.part_screenshot

module, 65

P
path() (in module os-

ewb.handle_editor_config_command), 64

Q
query_yes_no() (in module os-

ewb.handle_editor_config_command), 64

R
remove_existing_directory_recursively()

(in module osewb.handle_docs_command), 64
run() (FreeCADCustomPropertyTable method), 62

S
setup() (in module os-

ewb.docs.ext.all_summary_table), 61
setup() (in module os-

ewb.docs.ext.freecad_custom_property_table),
62

setup() (in module osewb.docs.ext.freecad_icon), 63
setup() (in module os-

ewb.docs.ext.osewb_docstring_process),
63

74 Index

	Deciding on a Machine
	Breaking Down a Machine Into Parts
	Designing Icons
	Breaking Down Parts Into Sub-Parts
	Designing Parts
	Defining Relationships Between Parts
	Editor
	Breakdown Strategy
	Branching Strategy
	Versioning Strategy
	Third Party Services
	Repository Scope and Naming
	Root Repository Contents
	App Gui Architecture
	Library Package
	Part Classes
	Model Classes
	Attachment Functions
	Workbench Package
	Command Classes
	OSE Workbench Ecosystem
	osewb
	examples
	Indices and tables
	Python Module Index
	Index

